

Software Engineering (CS 2450) - Fall 2018

10/2/18 – 11/6/18

FINAL MILESTONE

Team 5

Team Lead: Brock Brown

Azure Dev Ops Lead: Brad Allred

Lead Programmer: Myron Burton

Programmer: Tanner Chamberlain

Programmer: Reid Kuttler

Lead Architect: Mariah Bleak

Scrum/QA Lead: Heather Hyer

Scribe: Linda Jensen

 1

Table of Contents:

Software Development Plan 2-42

 Introduction 2

 Process Model 3

 Organization of the Project 4

 Standards, Guidelines, Procedures 6

 Management Activities 7

 Staffing 7

 Risks 8

 Methods and Techniques 9

 Quality Assurance 12

Work Packages 16

 Resources 17

 Budget and Schedule 25

 Changes 27

 Delivery 33

Meeting Logs 43

 2

Introduction

Background/History

The Abacus has been used for calculations for thousands of years. It has proven to be an
effective means of visualizing numbers and the way they interact. It is proposed that we implement a
virtual abacus to teach kids how to visualize and work with numbers.

Aims

The abacus aims to teach children how to think of numbers visually and kinesthetically, thus
helping many different kinds of minds to understand numbers and math.

Deliverables

- Software Development Plan
- AbracadAbacus App Prototype
- All Baseline Requirements
- Chapter expert explanations
- Meeting logs

Persons Responsible
 Team Lead: Brock
 Administrator: Dr. Sharp
 IT Department: IT Department
 Teacher: Pam Hyer
 Student: Joslin Kuttler

Summary
 The AbracadAbacus (name subject to change) app will be used on computers in a classroom
setting. It will be used by children in grades K-5 as a learning tool. There will be different levels for each
grade, which will change the number of the columns in the abacus. This app will have the functionality
of an abacus with counting, addition, and subtraction. It will be available for Windows computers
versions 7 and newer and macOS versions 10.10 and newer. Both systems also need to be running Java
1.8.

 3

Process Model
Process Model
 We are using Kanban. See reasons in support of Kanban in Milestone 1 Documentation - page
11. We used Kanban by using the board of tasks to be completed in each sprint and making sure our
tasks were completable inside each sprint.
Activities
 Planning, coordination, programming, system/GUI design, documentation.
Identifiable Milestones

- Milestone 1
o Meetings w/ Administrator, Teacher, and Student to determine requirements

specifications
- Milestone 2

o Approval of concept and proposals with Administrator, Teacher, and Student
- Milestone 3

o Approval of Prototype Design (GUI)
- Milestone 4

o Proposal of change order
- Milestone 5

o Approval of change order concept
- Milestone 6

o Approval of finished product (including documentation, prototype, and chapter expert
explanations)

Critical Paths
 The most critical path is the documentation. The documentation is what drives the project and
tells us what we’re doing.

 4

Organization of the Project
Relationship with User Organization

- Information needed
o Grade requirements, planned use, current teaching methods

- Services Required
o People to test the program on (students and teachers)

Identified Team Member Roles
- Team Lead – Brock Brown

o Looks at the big picture and makes sure all team members have feasible, clear, and
complementary tasks assigned to them.

- Azure Dev Ops Lead – Bradley Allred
o Cost estimation, task time management, and Azure DevOps management. Role in Azure

DevOps will allow all team members to add time estimation to their tasks and actual
time.

- Lead Programmer – Myron Burton
o Design and develop the structure of the code. See where development needs to be

focused know the skills of the programming team. Adhere to software quality standards
agreed upon so work may be done to the highest possible quality.

- Programmers – Tanner Chamberlain/Reid Kuttler
o Assist in creating the abacus prototype. Create supporting documents to plan and

design the project, and work with the programming team to identify and manage the
risks involved in the project. Program the secondary views for the Abacus app.

- Lead Architect – Mariah Bleak
o As software architect for this project, my duties relate a lot to the liaison between

stakeholders and the product development. It is my job to ensure the graphical
representation of the project, which consists of but not limited to: UML diagrams, class
diagrams, use cases, and prototypes. Requirements and specifications set by the
stakeholders influence the design and implementation of the product, and as it develops
I use the architecture items to share with the stakeholders and get their feedback about
further functionality and development. I take that feedback and relate it to the
programmers and developers to further cultivate a product that satisfies the needs of
the client while remaining within the financial means laid out in the contract with the
client.

- Scrum/Quality Assurance (QA) Lead – Heather Hyer
o Oversee the team's agile development process. Decompose milestones into sprints and

backlogs. Oversee task assignment and management. Create a quality assurance plan
and document test cases.

- Scribe – Linda Jensen
o Take meeting notes, compile documentation, and help in all other areas as necessary.

Ensure that each meeting has a detailed meeting log and mark any questions and action
items where follow-up is needed. Work to assure that all documentation meets
requirements.

 5

Org Chart

Chapter Expert Explanation (Chapter 5- Brock Brown)
We will use section 5.2.5 (The Agile Team) frequently. We will also use the hierarchal organization style
and adhocracy because our project is new to everyone. As the manager, I will use the relation
management style and I will identify goals at an early stage and communicate them clearly.

It’s really important to decide what the project goals are, i.e. fastest, least memory use, etc. so everyone
knows and can comply with said goals. Along with these goals must come the explicit expectation of
clear notes/pseudocode in the file. As we progress we will further clarify the standards for both in-code
documentation and out-of-code documentation. I think that the ideal communication is an informal and
open dialogue, which I believe supports my goal of an integration-style leadership and team.

Chapter Expert Explanation (Chapter 11- Mariah Bleak)
Software architecture concerns the large-scale structure of software systems. This large-scale structure
reflects the early, essential design decisions. This decision process involves negotiating and balancing of
functional and quality requirements on one hand, and possible solutions on the other hand. Software
architecture is not a phase strictly following requirements engineering, but the two are intertwined

Three purposes:
- Vehicle for communication among stakeholders
- Captures early design decisions
- Transferable abstraction of a system

Forces that influence architecture:
- Developmental organization
- Background and expertise of the architect
- Technical and organizational environment

In the software architecture, the global structure of the system has been decided upon. This global
structure captures the early, major design decisions. Whether a design decision is major or not really can
only be ascertained with hindsight, when we try to change the system.
Stakeholders speak with architect back and forth over requirements and quality, when they reach an
agreement that feeds into the development.

 6

Standards, Guidelines, Procedures

Documentation procedures
 Documentation is to be delivered once a week before the client meeting each Thursday
afternoon at 2:30 p.m. The quality of the documentation is to be assessed through the Quality
Assurance (QA) plan (see section marked “Quality Assurance”). The documentation is kept up to date
through the Azure DevOps wiki, that uses versioning and updates immediately when changes are made.

Chapter Expert Explanation (Chapter 4 – Mariah Bleak)
Configuration management comprises of careful procedures that are necessary to manage every
element over the lifespan of a large software system or a distributed development project. Throughout
the lifetime of a system or project, there may at any given time exist different versions of the software,
depending on what updates have been given to the client and if any programmers are working on older
versions.
Baseline –official version of the complete set of documents related to the project.
Configuration items are the items contained in the baseline.
Ex:
• Source code components
• The requirements specifications
• The design documentation
• The test plan
• Test cases
• Test results
• The user manual
Configuration management takes care of controlling the release and change of CRs throughout the
software life cycle.
CCB (Configuration control board) ensures that any change to the baseline is properly authorized and
executed. When a change request is submitted to the CCB, they need info on how the change will affect
the product and the development process. If approved, the change request becomes a work package
which will need to be scheduled. All changes and status of changes need to be recorded, this ensures
that if needed to go back to a previous version or to monitor what changes have been made there is a
clear record.

 7

Management Activities
Management Priorities

The priorities for the project are documentation, usability, and responsiveness
o Documentation should be clear, meet all requirements, and thoroughly communicate

the work done on this project.
o The prototype delivered should work as expected, making it usable.
o The program should be quick to load and respond to user input.

 Report Regularity
o Reports will be every Thursday afternoon at 2:30 p.m.

Staffing
Milestone 1
 Allred, Brad Azure DevOps Lead
 Bleak, Mariah Lead Architect
 Brown, Brock Team Lead
 Burton, Myron Lead Programmer
 Chamberlain, Tanner Programmer
 Hyer, Heather Scrum/QA Lead
 Jensen, Linda Scribe
 Kuttler, Reid Programmer

Final Milestone
 Allred, Brad Azure DevOps Lead
 Bleak, Mariah Lead Architect
 Brown, Brock Team Lead
 Burton, Myron Lead Programmer
 Chamberlain, Tanner Programmer
 Hyer, Heather Scrum/QA Lead
 Jensen, Linda Scribe
 Kuttler, Reid Programmer

 8

Risks
Hardware Risks

We have the hardware available for the scope of creating documentation and a functional
prototype. We may not have hardware to test our prototype on all platforms, but that may be
impossible given our current scope. Documents and data are backed up in a Microsoft server to prevent
data loss.
Unstable Requirements

Requirements may be subject to frequent change or review, delaying the project. Remedied by
creating a firm requirements specification document to confirm all requirements, then creating a change
order protocol to handle all changes during production. Users, client, and developers must all be
included during the design phase to minimize the need to change requirements.
Product is too complex

It is possible to become over-ambitious with our project. Product should meet minimum
requirements, and the design phase should consider our time frame and resources before committing to
a requirements specification.
Personnel Shortfall

Personnel may become sick or quit unexpectedly. In that event, tasks assigned to that person
will be redistributed throughout the group.
Unrealistic Schedule or Budget

With a hard deadline for the project, an unrealistic schedule is possible as the deadline
approaches. Planning, task assignment, and timeboxing are critical to ensure that tasks will be
completed on time.
Wrong Functionality

Creating the wrong prototype or providing the wrong documents. Proper requirement
definitions and clear communication with the client before and during the project will minimize this risk.
Wrong User Interface

It is possible to make a technically correct program that is difficult for people to use. The goal of
our project is to enhance classroom learning, not detract from it with a difficult or confusing UI. Gather
information and feedback from teachers and students to minimize this risk.
Gold Plating

Creating unnecessary or "nice" features outside of the requirements may make it hard to meet
our deadline. The requirements outlined should be met first, then any additional features checked off by
the client and submitted through a change order if time permits.
Capability Shortfalls

Complications with using tools or software may arise and delay the project. It's important that
everybody learn and become familiar with project tools like ADO and Eclipse. Team members with
experience can teach members that are less familiar with the software.

Chapter Expert Explanation (Chapter 8- Tanner Chamberlain)
8.1 talks about identifying variables, might not be relevant to the requirements.
8.2: 3 types of uncertainty: Product (what we're making), Process (how we're doing it), Resource (people
and tools). May not be relevant to requirements
8.3: Techniques for mitigating risk during development. Not included in requirements, but to be used
afterwards.
8.4: Techniques and systems for keeping the project on track. Might be useful for planning
requirements. Includes task assignment and project diagrams such as Gantt charts and PERT diagrams.

 9

Methods and Techniques
Requirements Engineering

- Meet with the administrator and the client to discuss the requirements. We will use the
interview method and will read the state requirements for students in each grade.

Non-functional requirements our team would recommend for consideration
- Write name in app and when you complete the abacus task it sends the results to a remote

database for storage.
- Party Parrot hidden Easter egg
- Change of colors
- Reverse-engineered tutorial
- Fun music

Chapter Expert Explanation (Chapter 9 – Heather Hyer)
We need to specify requirements from the perspective of:

- IT
- Student
- Teacher
- Team
- Admin (Prof. Sharp)

9.1: The end result of this should be the requirements specification document (baseline). We need this.
9.1.4: The Delphi process (MoSCoW). After this process is complete, we will build tasks bases on the
requirements specification acquired.
9.2: This will be continuously updated by various team members but mainly the scribe.
9.2.1:This is where you can find requirements traceability techniques and formats.
9.3:Use if you need help with creating this document.
9.3.1:Non-functional requirements will be continuously expanding.
Four types of non-functional requirements:

- External interface requirements
- Performance requirements
- Design constraints
- Software system attributes.

These non-functional requirements can be viewed as constraints placed upon the development process
or the products to be delivered.
9.4:Tracking track progress and completion. I suggest we track mainly in ADO and everyone needs to
update their progress regularly.

Design
- Prototype-based design
- UML diagrams
- Use-case diagrams
- Storyboard

Chapter Expert Explanation (Chapter 12- Reid Kuttler and Tanner Chamberlain)

12.1: Code must be designed by using modules.
Modules are units of code that do one specific function.

 10

Examples: a method, a class, or a related set of classes.
Good module usage has lots of benefits and makes clean code.
12.1.1: Modules must only have the data necessary to carry out their task. Accomplished through proper
return and method passing channels.
12.1.2: Modules must strive for high cohesion: all code in a module is devoted to one purpose.
Modules must strive for low coupling: modules must only communicate essential information, nothing
extra.
12.1.3: NO GLOBAL VARIABLES. Use "get" and "set" methods, keep data within modules private.
12.1.4: Modules must strive for low complexity, while still being complex enough to complete their
functions. Complexity is measured in a variety of ways.
12.1.5: Correct module set up should be able to be shown in a graph, such as a UML diagram for
example.
12.1.6: Not important.
12.2.1: Decompose Functions in code into a number of sub functions.
Use a combination of Top-down and bottom-up decomposition
12.2.2: Draw a context diagram which is a data flow diagram representing the whole system in one
process.
Go from a set of data flow diagrams to a hierarchical model for how you are going to implement this.
12.2.3: A good program reflects the structure of both the input and the output.
Perhaps use Jackson Structured Programming. This involves combining the input and output diagrams
and merging them together to form the global picture of what the program does.
12.3: Object oriented involves identifying objects, determining their attributes, and determining
relationships between objects.
This is a middle-out design.
12.3.1: A rich set of notations
A poor process model as it is difficult to decide when to iterate or when to do a specific iteration.
12.3.2: Large attention paid to the design phase
The version of the method hinges on the availability of a good requirements document.
As a method, Fusion is very prescriptive
12.3.3: It is very complete iterative model that goes further than just analysis and design.
It uses the unified Modeling Language to represent artifacts and views.
Use cases play a central role.

12.4

 Problem-oriented Product-oriented

Conceptual

ER modeling
Structured Analysis
OO Analysis

Structured Design
OO Design

Formal
JSD
VDM

Functional Decomposition
JSP

 11

12.4.1: Object oriented methods usually only cover the specification subprocess. We still need the other
three processes discussed in chapter 9, Elicitation, specification, validation and negotiation.
12.5: Good Design pattern is MVC
Model, View Controller
12.6: There are seven user roles for design documentation

1. The project manager
2. The configuration manager
3. The designer
4. The programmer
5. The unit tester
6. The integration tester
7. The maintenance programmer

12.7: Errors made at an early stage are difficult to correct, therefore it is necessary to pay extensive
attention to testing and validation issues during the design stage.

Implementation

- Java

Chapter Expert Explanation (Chapter 13- Myron Burton)
13.2.5: Test driven development is an effective way of assuring that we cover our requirements. TDD is
done by first designing tests and then making the implementation. We can use this to create basic
functionality tests that would show that an abacus can do the math asked.
13.3: Testing is documented in what IEEE calls a verification and validation plan. This report covers the
design specification, the procedure specification, and an item transmittal report showing how each
feature will be tested, what sequence testing takes and what items will be tested respectively. After
testing is done a test log is composed, an incident report with incidents that need further investigation is
written, and a summary report shows the overall evaluation of the testing and any findings that should
be reported. Documenting our bug fixes will allow us to track progress and note where new issues may
have been presented.
13.5: We will use this to make sure that all of our code is relevant and that our documentation actually
matches what is made. If we cover all of the requirements, both in documentation and in code, then we
will provide a more complete solution
13.5.3: With this we can make sure that no part of our requirements specification is lost. We can assure
a complete solution for the customer.
13.6: We will be able to test robustness if an invalid input is given in code. By seeing how our code
reacts to artificial errors we can pin down issues with code and also adjust the way we handle input.
13.7: Theoretical joints in a program can be an issue. Places where information has to be transferred
from one system to another may cause issues. Making sure that we define potential areas where errors
may occur, we can stress those joints to assure proper functionality

Version Control

- Git Hub
- Azure DevOps Wiki

 12

Quality Assurance
Quality Assurance Plan
Manual testing:

• We will implement peer reviews of code

• The programmers will perform regular walkthroughs of one another’s code

• Correctness proofs are unnecessary for a project of this scope

• Stepwise abstraction is a moot point, since we designed our product around requirements

Coverage-based testing:

• This will make sure the code is actually executed

• This will help measure development efficiency

• Our primary focus will be on coverage-based testing of Requirements Specifications

Fault-based testing:

• Error seeding doesn’t make sense since we’re not dealing with database manipulation or

statistical analyses

• Mutation testing will be useful in testing different values for calculation on the abacus

Error-based testing:

• This will be useful for testing boundaries and edge cases

Requirements-based acceptance testing:

• Validation: Are we building the right system?

o This is more applicable in the earlier stages of development

• Verification: Are we building the system right?

o Acceptance testing for each feature will help to verify functionality

User testing:

• Often the users encounter problems the programmers never consider. In this particular project,

since children can be unpredictable, having them test a product designed for them would help

ensure its quality.

• It would be beneficial to have actual users go through use cases such as the following:

Primary Actor: Elementary school student
Scope: School district
Level: User goal
Stakeholders and Interests:
User---wants to have fun at school
Teacher---wants their students to learn
Department---wants the technology they pay for to be used
Precondition: None
Minimum Guarantee: Student accesses desired lesson
Success Guarantee: Student accurately completes desired lesson

 13

Main Success Scenario:
1. Student selects their grade level
2. Student selects activity type
3. Student is given a number and an operation to perform
4. Student moves the correct number of beads
5. Student completes the activity
Extensions:
4a. Student never moves the correct number of beads
 4a1. After a certain number of tries, student is shown the correct answer

Chapter Expert Explanation (Chapter 6- Linda Jensen)

 14

These are the quality charts that we should be using to model our prototype after. Everyone should be

familiar with these terms as we go into production. We should be mostly focusing on Usability and

Correctness for this project. It is very important that we work with the client to produce a prototype

that best matches their specifications. The output should be able to be interpreted by someone that

doesn't know the program already, hence usability for an elementary school aged audience.

Throughout the process of creating, testing, and editing the product, we need to be able to answer all of

these questions

 15

These are the quality characteristics that we're looking for in a final product. We can't focus on all at

once, so I suggest we focus on Functionality and Usability as the most appropriate for the Abacus app.

The Total Quality Management (TQM) concept is about applying principles of quality to each aspect of

the organization and is the responsibility of each employee. TQM has three cornerstones: customer

value strategy, organizational systems, and continuous improvement. The basic idea of these

cornerstones is that the product should benefit what the customer actually needs (always work with the

customer to determine their needs), people are willing and able to create a quality product, and errors

are opportunities for learning.

The Capability Maturity Model (CMM) was derived from TQM. The software process is characterized

into 5 maturity (evolutionary) levels: Initial, Repeatable, Defined, Quantitatively managed, and

Optimizing. Below is a chart detailing the CMM.

 16

Work Packages
Work Breakdown Structure

 17

Resources
Required Tools

- Azure DevOps
- Google Docs
- Microsoft Word
- OneDrive
- Eclipse
- GitHub
- Java FX
- Java 10,
- Trello
- Slack.
- Windows computer versions 7 and newer or macOS versions 10.10 and newer

Azure DevOps

Our use of ADO incorporated the use of Epics. Features, Tasks and User Stories. We used Epics

and the foundation for each of our milestones.

Inside each Milestone were links to Features which were all the objectives needing fulfillment

Each feature contained User Stories, which contained tasks and sprints and sometimes other stories

 18

Our User Stories were placed into weekly sprints that were determined by our weekly meetings. The

sprints used 6 states. New, Active, Ready for Review, Failed review, Passed review, and Closed.

New: used as the untouched column this way our team lead could determine what wasn’t

getting done and reach out to the assigned person and see if there were any blocking issues preventing

them from commencing.

Active: once a task was begun, the assignee would change the status to active.

 Ready for Review: let our QA know what tasks were needing to be looked at.

Failed review: if the task was not completed to specification, it was sent to Failed review. The

assignee would receive an email and letting them know that more was to be done for the issue

 Passed review: once completed to spec, the task was placed here for final approval

Closed: the Team lead would close the issue once his final approval was given.

 19

The Code

Our code repository and version control were implemented through ADO. The Commits can be seen

using 3 filters. History type, author, and a date range. Also available for view are the branches, pushes

and pull requests. These can all be done in a general context, or in the context of an individual file or

folder.

 20

 21

 22

 23

 24

 25

Budget and Schedule
Gantt Chart

Pert Chart

Cost Estimation

Chapter Expert Explanation (Chapter 7 – Bradley Allred)
This section (7.3) is generally used in coordination with a cost estimation expert, but since this is a

smaller project (Relative to the working world) we can estimate our own manhours cost. It is important

to note that adding more people to the project will have diminishing returns. A 20 man-month cost

 26

estimation does not mean you can just throw 80 people at the project and have it done in a week. Also,

with this style it is important to tell the customer the uncertainty of the estimation. Research has shown

that there is a 75% chance that the actual cost will be within 20% of the estimate. The benefit of this

style is that as the project progresses you will continue to get more and more accurate.

 27

Changes
Handling Changes
 Proposed changed will be handled with a change order form (see blank form below). Each
proposed change will have a cost estimation for the work required to realize the change, and the change
request can either be approved or denied. If it is approved the change will be incorporated into the
project using Git to track the versioning of the code.

 28

Proposed Change Order Form

 29

Delphi Method/Process

Brad reverse-engineered
tutorial
database w/ points
optional color palette
fun music
party parrot Easter egg

1 reverse-engineered tutorial
1 database w/ points
2 optional color palette
2 fun music
1 party parrot Easter egg
2 logarithms
1 server
1 Easter egg to read the
documentation
1 password to log in
2 tutorial, practice, assignment,
test
1 teacher-designed assignments
2 multiplication, division
3 binary, octal, hex, any other
base
1 powers
2 randomized test design
4 screen-shared tutorial for long-
distance tutoring
2 enter name and get grade
1 make it android-compatible
1 accessibility-oriented
2 make it for blind students
1 give it a fun storyline (pirates
attacking, superhero, etc.)
1 pvp abacus competitions
1 user testing
2 square root calculation
1 Boolean algebra
1 theme music

reverse-engineered
tutorial
database w/ points
party parrot Easter egg
theme music

Brock tutorial, practice,
assignment, test
teacher-designed
assignments
multiplication, division
binary, octal, hex, any
other base
powers

reverse-engineered
tutorial
database w/ points
powers
theme music

Linda logarithms
server
Easter egg to read the
documentation
password to log in

reverse-engineered
tutorial
database w/ points
password to log in
theme music

Reid randomized test design
screen-shared tutorial
for long-distance
tutoring
enter name and get
grade
make it android-
compatible
accessibility-oriented

reverse-engineered
tutorial
database w/ points
accessibility-oriented
theme music

Myron make it for blind
students
give it a fun storyline
(pirates attacking,
superhero, etc.)
pvp abacus
competitions
user testing
square root calculation
Boolean algebra

reverse-engineered
tutorial
database w/ points
Boolean algebra
theme music

Heather user testing
square root calculation
Boolean algebra
enter name and get
grade
make it android-
compatible

reverse-engineered
tutorial
database w/ points
make it android-
compatible
theme music

 30

Mariah Easter egg to read the
documentation
password to log in
give it a fun storyline
(pirates attacking,
superhero, etc.)
pvp abacus
competitions

reverse-engineered
tutorial
database w/ points
pvp abacus
competitions
theme music

Tanner server
Easter egg to read the
documentation
password to log in
teacher-designed
assignments
multiplication, division
theme music

server
Easter egg to read the
documentation
password to log in
teacher-designed
assignments
multiplication, division
theme music

 31

Brad reverse-engineered tutorial
database w/ points
party parrot Easter egg
theme music

Brock reverse-engineered tutorial
database w/ points
powers
theme music

Linda reverse-engineered tutorial
database w/ points
password to log in
theme music

Reid reverse-engineered tutorial
database w/ points
accessibility-oriented
theme music

Myron reverse-engineered tutorial
database w/ points
Boolean algebra
theme music

Heather reverse-engineered tutorial
database w/ points
make it android-compatible
theme music

Mariah reverse-engineered tutorial
database w/ points
pvp abacus competitions
theme music

Tanner server
Easter egg to read the documentation
password to log in
teacher-designed assignments
multiplication, division
theme music

 32

8 reverse-engineered tutorial
8 database w/ points
1 pvp abacus competitions
1 make it android-compatible
8 theme music
1 Boolean algebra
1 accessibility-oriented
1 password to log in
1 powers
1 party parrot Easter egg

Final Three:
Reverse-engineered tutorial
database w/ points
theme music

Time:

Brad 8 6 4 Brad 7 6 5 Brad 7 6 6

Brock 6 3 7 Brock 6 4 7 Brock 6 5 7

Linda 4 9 5 Linda 5 8 6 Linda 5 7 6

Reid 5 3 10 Reid 6 4 9 Reid 6 5 9

Mariah 4 8 9 Mariah 5 7 8 Mariah 6 7 8

Heather 9 8 9 Heather 8 7 8 Heather 8 7 8

Tanner 8 8 8 Tanner 7 7 8 Tanner 7 7 8

Myron 7 8 9 Myron 7 7 8 Myron 7 7 8

AVG: 6.5 5.5 7.5 AVG 6 6 7.5 AVG 6.5 7 8

 33

Delivery
It will be distributed via download through a website (myronburton.com/ado)

Base GUI Samples

 34

 35

Prototype

Move beads when clicked on:

// check to see if we are incrementing or decrementing

// decrement

if (currentCounter == Counter.COUNTED) {

 // move the bead that called

 beads.get(column).get(beadNumber).move();

 // see if there any beads that are below the bead clicked that

also need to move

 for (int i = 1; beadNumber - i >= 0

 && beads.get(column).get(beadNumber - i).getCounter()

 == Counter.COUNTED; i++) {

 beads.get(column).get(beadNumber - i).move();

 }

}

// increment

else {

 // first move the bead that called this

 beads.get(column).get(beadNumber).move();

 36

Graphic 1

 37

 // see if there any beads that are below the bead clicked that

Graphic 4

 38

also need to move

 for (int i = 1;

 beads.get(column).get(beadNumber + i).getCounter() ==

 Counter.NOT_COUNTED

 && beadNumber + i < 5; i++) {

 beads.get(column).get(beadNumber + i).move();

 }

}

Count beads after click:

// start fresh

count = 0;

// grabs each list and then each item

// and adds its value to the count.

beads.values().forEach(column -> {

 column.forEach(bead -> {

 count += bead.getValue();

 });

});

// change the textual output of the value

valueOut.setText(String.valueOf(count));

 39

AbracadAbacus needs to have a simple design that allows this tool to be transparent in the

hands of students, leaving them to feel that they are interacting with an abacus and not as though they

were fighting against a program. For this reason a Human Compatible Graphic User Interface (HCGUI) is

imperative if this abacus be implemented in the environment. For this reason we have decided to

modify greatly how our abacus works.

To make it as simple as possible, all a student has to do is insert their name, select their grade,

and choose what type of math is to be performed. This will allocate the number of columns necessary

for their project and give tips on how to perform tasks when needed all while being simple and straight

forward to the student.

Teachers also have an easy access screen that shows progress of their students. By typing in

their name they get a table view of students and what values they have on their abacus. (See graphic 1)

Interaction of the abacus comes down to the primary interaction of the user with the beads of the

abacus. Students may be informed of the rules of using an abacus such as when moving a fifth bead in a

column to reset the column and add a fives bead above the column. (See graphic 3) They must also

understand that once the second set of five beads has been made that they must reset the column

again, add a fives bead above the column, totaling ten, and then add a bead in the column to the left

and resetting the fives bead. This process is outlined in graphic 4.

When beads move an update needs to be made to show the sum of the beads. To move the

beads we have to check all of the beads in the column that may have to be moved and then move those

that should be moved. Once the beads have been moved we will have to tally the value of the beads

again to update the decimal output of the display. This is shown in Graphic 5.

While developing the abacus we have implemented a number of test cases to insure that the

abacus meet any and all requirements specified. Focusing on the code, these are some of the code

based test cases used. Firstly, as code was modified, we used a debugger to make sure that every

function had a purpose and was being called correctly following a coverage based testing model. We

also included test cases where we would intentionally modify values to insure that the abacus either

broke or remained functional as expected. If certain parts could be removed without removing

functionality from the abacus and while maintaining specifications then it was done. Completing the

modification and removal of pieces of code followed an error based testing model. Another set of

testing was done for edge cases. It was discovered that there is a limitation to the number of columns

that could be made with the abacus without a major restructure of the code. By limitation of Java’s long

primitive value, the max value that can be displayed is 9,223,372,036,854,775,807. That means that a

 40

maximum of 18 columns can be used as adding a 19th column introduces the possibility of rolling over

the long value which denotes the value of the board. In practice we never display more than 7 columns,

but we have found that potential issue and have dealt with it.

Besides code based testing techniques, use based cases have been implemented to insure that

the abacus functions as expected. The first, and most basic use case is to introduce someone to the

abacus and have them interact with the abacus, moving beads up and down in their respective columns.

This was done to insure ease of use as well as proper functionality of an abacus as expected by those

who are proficient in the tool. With that testing completed at each update of the master branch, values

would be tested after certain math functions performed on the abacus. Among those were

multiplication, addition, division, and subtraction. By allowing someone to run these functions on the

abacus and checking the output with that displayed by AbracadAbacus, we were able to insure that the

application would display appropriate values no matter what value was given. Videos of the use of the

abacus as well as photos of the prototype are available online at myronburton.com/ado/

Finally, we have tested the abacus against the requirements specification in a coverage based

fashion to ensure that all functionality of the abacus is present. With the change order in effect, that

included testing out the networking functionality of the abacus and validating that values would be

updated across use sessions of the abacus.

http://myronburton.com/ado/

 41

UML Diagram

 42

Chapter Expert Explanation (Chapter 10 – Brock Brown)

We will use a lot of UML Class diagrams

we will use a story board

We will use a use case diagram

Sequence diagrams will be useful.

We will use CRC cards

Prototype Assessment

Between Milestone 1 and the final Milestone, our group decided to throw out the prototype we

originally presented –mostly. After discussing it as a team and going over the requirements that were

cultivated from our meeting with a teacher, we decided we needed a change. While we scrapped the

user-end interface and made it completely different, we did salvage a lot of the backend code from the

original prototype.

 We kept a lot of the original concept, which isn’t saying too much since the basis is a standard

abacus, which is what we were tasked to build. We added some other features, such as changing the

color of the columns when they are used fully (in groups of five), and we added a number tracker at the

bottom of the abacus so students could keep track of what they are calculating.

 Another major change that we made was the flow and user pathway for the application, which

was one of the more predominant reasons that we had for getting rid of the original prototype. We

wanted a product that was more user friendly right from the moment you enter the application. We

started with a simple name recognition login, making sure it was simple enough for young children, and

the product would tell from the login credentials whether the user was a teacher or a student. From

there, it would branch to two different ends of the application: teacher view and a student view. With

all these changes on our plate, it was easy for us to decide to dispose of the original prototype and start

fresh.

 43

Meeting Logs

Team Name

Meeting Log # 1

Date:
9/27/18

Duration: In class reviews of binders

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 15%

Linda Jensen 15%

Brad Allred 8.3%

Mariah Bleak 15%

Myron Burton 15%

Reid Kuttler 8.3%

Tanner Chamberlain 8.3%

Heather Hyer 15%

Topics Discussed

Team 4

• We should add how the Wiki will be used

• We need more thorough test cases

• They didn’t have a title on their test cases page
Team 3

• They have nice class diagrams, but they put their
code in there as a code snippet, which is wrong

• Their report isn’t very long compared to the others

• We like how big the buttons are for on the GUI but
it’s pretty rough.

• Their chapter summaries aren’t really summaries-
just saying “This person read this”

• The change order form is a little too simple

• The use cases look good

• They still have it named VSTS in their report instead
of Azure

Team 2

• Fancy binder

• They didn’t do front and back

• Spelling mistake: change order forum instead of
change order form

• Doesn’t say who did each chapter

• They did a tutorial, which we like and want to use.

• The GUI looks really nice

• They don’t have a class diagram. They have a table
of contents but not all the pages are numbered.
(they got off on the numbering because the class
diagrams aren’t there)

Team 1
- Doesn’t have a title page
- UML diagram is not correct. You’re supposed to put

your variables at the top (with it’s classification like
int, string), and then functions go below.

 44

- The GUI looks nice though we’re not supposed to be
doing multiplication and division yet

- Lot of screenshots for Azure Dev Ops, but none of
them are explained

- They have literal money cost, not in hours. Why
does the project manager cost $100 an hour and
the rest $75?

- They don’t have test cases.
Team 6

- No signatures
- Some of their meeting notes are outside of the

table
- Typo: Scum instead of Scrum
- The GUI isn’t very graphical… It’s just drawn in word

instead of showing as how it will look in the app
- Lots of code.. Why is their Abacus named Abicus
- Screenshots aren’t explained. Pages of code and

screenshots that aren’t explained and are confusing.

 45

Team 5

Meeting Log # 2

Date:
10/4/18

Duration: Meeting with Client about Baseline

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 13%

Linda Jensen 13%

Brad Allred 13%

Mariah Bleak 13%

Myron Burton 13%

Reid Kuttler 13%

Tanner Chamberlain 9%

Heather Hyer 13%

Topics Discussed

- Everyone was involved in this meeting, since this
meeting includes the side meeting of just the team.

- We discussed backlog planning and sprints in ADO
- Figuring out the task planning for the storyboarding,

everyone needs to task it out.
- Mariah, Heather, and Linda will be meeting with the

Educator to get functionality and design input on
this coming Tuesday

- We need to add stories to Prototype (programming
team needs to take the lead on that, since it is more
specific)

- There’s not much we’re able to do on the prototype
until we meet with the educator to get input- we
don’t want to go in the wrong direction

- Everything is getting tasked out in this meeting and
adding all the estimate points.

Problems Encountered - There’s a lot of backlog planning that needs to
happen on our ADO to stay more organized these
next few sprints

- UML diagram is weak
- Keep everything related in the same section
- Change the signatures so there’s no signatures on

the pdf and have it on the printed copy only.
- Update the change form to look more professional,

and more like the one that the other team copied
from the internet.

 46

Action Items/ Further Questions - Heather will post in Slack the tutorials and examples
of online abacus to help Myron figure out
implementation

- Linda is in charge of doing an example change order
form for the documentation.

- Check ADO for further assignments each sprint.
- Everyone go and add tasks with estimations to all

the stories
- Add test cases and use cases within the GUI
- Do landscape on screen prints to see more
- Tanner: make diagrams so that the actors are easier

to see where people share things they interact with.
Overall it’s really good. Add Administrator of
teacher in the use cases

- Put the three task lists together from the educator,
our teacher, and the requirements.

 47

Team 5

Meeting Log # 3

Date:
10/9/18

Duration: Meeting with Educator (Pam Hyer)

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 8.3%

Linda Jensen 25%

Brad Allred 8.3%

Mariah Bleak 8.3%

Myron Burton 8.3%

Reid Kuttler 8.3%

Tanner Chamberlain 8.3%

Heather Hyer 25%

Topics Discussed

- More important to have both- can give them a
problem but also be able to go through curriculum
within the app

- We need tutorials for sure on how to use an abacus
even as a reminder

- The tutorial would show an example problem that
would show the abacus actually moving and it
would be interactive.

Learning Requirements for each grade
- K: They need to add and subtract within 10 (any

digits within 10 but the sum is no greater than 10).
Should be able to count to 100. Big deal is getting 1-
1 correspondence, like 1 bead is 1. Helping them
understand that this visual means this number. For
Kindergarteners should also have just a COUNTING
option. Move a bead and see the number change.
Questions like: If I have 3 bears and add 2 bears,
how many bears do I have. Even if the abacus
turned into bears instead of beads. (ADD THIS AS A
CHANGE ORDER?) Counting cars, chips, bears,
colors, cubes that snap together, so have round,
square, and shape. Count to 100 by 1s and by 10s.
Be able to add 3 to 7 without starting to count from
1 again. 3+5 = 5+3 (Number permanence). Add and
subtract within 10 with objects and then add and
subtract within 5 with numerals. From any number
between 1-10 what number do you need to add to
make it 10? Called “Make a 10”.

- 1: Decomposing (taking apart), Putting together
(making sets). Word problems are huge, though not
as important on an abacus. Base 10 operations.
Subtracting within 20. Adding within 100 as long as
it’s a single digit with a double digit, or a double
digit and a multiple of 10. And subtracting in
multiples of 10. 90-80=70. Need to do without
counting. We have to move past 10 when adding.

 48

They have to count up to 120. Instead of just pairs
of numbers being added, they can have up to 3
numbers being added but it still needs to be less
than 20. Be able to count by patterns. Like by 2s or
by 5s. Subtract within 20. If you have a 13-4, 13-3 is
10 and then -1. Get to 10 within subtraction. THAT
is the hardest one to teach kids because it’s more
abstract and has more steps. Trying to get them
away from counting each object. That one would
be really important and teachers would love it.
Having the whole column change color when you’re
supposed to switch to the next column would be
helpful. One important thing is 8 + what = 11. Fill in
the blank problems. Being able to know that a 10 +
a 9 is 19. Most first grade teachers stick with add
and subtract within 20. Compare two 2 digit
numbers.

- 2: Use subtraction with an unknown. 10- blank = 8.
All of these requirements are cumulative. Should be
able to just know that 12-5 = 7. Add and subtract
within 100. Know if a number is odd or even by
counting by 2s. Understand that the 3 digits on a 3
digit number mean 100s 10s and 1s. Count within
1000, skip count by 2s, 5s, 10s, and 100s. Give them
a number and have them represent it on the
abacus. Compare 2 three digit numbers to see
which one is bigger. If you wanted to you could do 2
abacuses.

- 3: Multiplication starts. It would be too hard to
teach the concept of multiplication on an abacus…
To help them know that 5*7 = 5 groups of 7.
Multiplication on an abacus might just be the actual
doing the problem instead of teaching how
multiplication works. Basic understanding of
division is the reversing of multiplication. Unknown
numbers in multiplication and division problems.
25/ what = 5. Multiplication and division within 100
but with no remainders. Rounding is huge in 3rd
grade. Rounding to the nearest 10 or nearest 100.
Add and subtract within 1000. Add and subtract
within 1000 and all the times tables 1-10 and 10s to
within 100.

- 4: Multiply by 2 digit numbers. They don’t have to
be multiples of 10. 35 is 5 times as many as what?
And 7 times as many as what? Wording questions is
a weird way. Learning how to represent a verbal
statement as a number statement. Find out 2
different ways to multiply to 24. Find all the factor

 49

pairs. (12*2, 24*1, etc). Show that factors wouldn’t
work because you have remainder over here…
Multiply 2 digits by 2 digits, or 1,2,3,4 digits by 1
digit. Division is up to 4 digit quotients with a 1 digit
divisor. Never over a 1 digit divisor.

- 5: They get into algebra a lot. Combined operations.
Add 8 and 7 and then multiply by 2. They learn
order of operations in 4th grade. They learn it as an
already written statement though, they can’t create
it from a word problem. Figure out how to do
multiple operations on one abacus? HOW does
multiplication work on an abacus? They can do
powers in 5th grade but only 10^2, 10^3, etc...
Multiply and Divide Decimals but not sure if we can
do decimals on an abacus. Long Division is a big part
of 5th grade also with 2 digit divisors. 5th grade has
far fewer standards but a lot more practice needed
with these more complex topics. A lot of practice in
5th grade.

- Teachers always want a way to track progress of
students, or else you would have to look around
and check each ipad or computer.

- Grade logins: K and 1: if you have a picture symbol
that represents them it would be best. They knew
that they were a dragon and a red apple. Picture
logins are necessary. 2nd grade they can type in a
name. Apparently Kindergarteners have to do 7
digit usernames and passwords all the time. It’s not
easy or good, but the kids can do it.

- Assessments make sense as long as the lesson has
interactive elements where they can get feedback
where they go. Or corrections from the program
when they do it wrong or when they submit a
problem. It should be able to tell the user what they
did wrong. Even if they made them try it again
before moving on.

- Options can time out, “You’ve done enough
counting today, now choose another activity”. Their
attention span is less than 10 minutes in
Kindergarten. Attention spans are usually the
amount of the age in minutes. Max of 10 minutes a
day in K and 1st spending in this app. 2 and 3rd
graders could go maybe 15. Even giving up any time
to a software program is tough for a teacher.

- Do a bunch of 1 minute activities for the little ones
especially. Never let a session be more than 15
minutes. Little colored bar that is going across the
bottom so they can know how long this is and how

 50

much more they have to do. Especially because they
can’t get a huge error ending message. As soon as
they finish an activity it gives them a choice again.
But gray out an activity after a while of playing the
same one. You have to finish the other sections
before you can get new questions in the favorite
one.

- Being able to see their own progress is huge.
- Digital rewards are AWESOME. You got another star

in your bank (or something like that). You can earn
stars for every activity and then every so often they
could use their stars to buy stuff to show up in the
game. If the tutorial guy was a robot then you could
use the stars to buy different hats for the robot or
whatever. Avatar builder as you earn things for it.
They loved stocking the rocket ship the most.

- http://www.corestandards.org/ for math for the
particular grade. It’s in graduate level language but
it’s a great resource.

- You could have the buttons on the front page fill up
with color as they’ve done each of the assignments
in each.

Action Items/ Further Questions - The educator used a website with kids and had
them click their grade level and kindergarteners
were able to click K and all the grades up could pick
too.

 51

Team 5

Meeting Log # 4

Date:
10/25/18

Duration: Meeting with Professor Sharp
outside of classroom

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 18.75%

Linda Jensen 18.75%

Brad Allred 6.25%

Mariah Bleak 18.75%

Myron Burton 6.25%

Reid Kuttler 6.25%

Tanner Chamberlain 6.25%

Heather Hyer 18.75%

Topics Discussed

- Milestone 2 and 3 will now be combined.
- The next major exercise should cover the functional

and non functional requirements and the delphi
method.

- You should have requirements for each of the 5
actors, including ourselves. You would have to do
maintance, docs that explain to the sharegolder
what our intentions are, come up with images an
animations for how the interface should work.

- Sometimes need to do meta stories to figure out
what we need for the project. Our non-functioning
requirement is based on a certain version of a
product so that we don’t want to worry about
updating mid-project.

- WE better see a really good baseline document
from the requirements. We create change orders
from the delphi list that we create in our team.

- Baseline requires a requirements specification
- We write the requirements specification and we’re

supposed to prepare one for each of the 5 actors,
and that is inspired by the milestone documents
online. We add in things like “We will be creating
this on visual studio” or something

- It’s things we need to do to make the thing to figure
it out.

- Everything that’s required from the customer’s list
is what we’re required to do. Develop the lists of
tasks.

- If you prepare the requirements specification from
the requirements solicitation and you must elicit
them from the shareholders (we’re shareholders)

- We’re assuming that it’s on each individual device,
forget cell phones.

- 5 actors: IT, student, teacher, team, admin (our
teach)

 52

- Notes from educator will go into the baseline
document for us.

- Prepare all records and documents and assign it to
Linda. Ex. A requirement is: having meetings.

- Prototype just demonstrates that we can make this
work, but when we throw out that you’ll do mult
and division that involves a major interface change.
Which is where change orders come in.

- If the teacher doesn’t understand it then it was a
bad design or it was a bad presentation

- Make sure this is going on the big picture.

Action Items/ Further Questions - Get better at being chapter experts. We should
really be following the book more

- We are not doing the app on the internet! Don’t
add internet capability, we’re going to make it all on
individual components.

- Linda: make the document as the requirements
specification. Track the assigned task to that list of
requirements. Change orders are for on top of that.
Req specification should have space for 3 or 10 or 2
tasks. In the tasks you should have what
requirements it will cover. Summarize it as best you
can, because the more detail it is the harder it is to
maintain it.

 53

Team 5

Meeting Log # 5

Date:
10/30/18

Duration: Team Meeting

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 13%

Linda Jensen 13%

Brad Allred 13%

Mariah Bleak 9%

Myron Burton 13%

Reid Kuttler 13%

Tanner Chamberlain 13%

Heather Hyer 13%

Topics Discussed

- Discussing the mentor discussion outline and
preparing for the meeting with our Mentor that will
be on Thursday

- The chapter expert is the one that needs to add to
the requirements

- We need to do bullet points in the chapter
summaries for our suggestions for the
requirements.

Action Items/ Further Questions - Put milestone 1 documents into the wiki for
reference

- Everyone needs to update their chapter summaries
to include the suggestions for our requirements
specification

- Publishing a document in the wiki for all of us to
edit our chapter summary suggestions.

- Everyone before tomorrow needs to go back
through their chapters and add in things to the wiki

 54

Team 5

Meeting Log # 6

Date:
11/1/18

Duration: Team Meeting

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

- Making some goals for our final milestone so that
we can be prepared.

- Looking at the Delphi process that each of us sent in
to Brock

- Going over non-functional and functional. Non-
functional doesn’t change the functionality of the
project (like adding a color to the GUI)

From Teacher
- Go through milestone 1 and anything you assumed

you didn’t have to have- you do! Establish and
assign how you will do it. Do a WBS. Put people at
the bottom of that structure that feel like they can
add to that.

- Team manager can look at the WBS and add people
as necessary to finish deadlines and have it all laid
out. Have it defined instead of locked in. Anticipate
for the project plan

- At a minimum have 1.2, 2.1 completed plus at
leaste a stab at the other stuff. If you’re going to use
pages 40-41 you need to have an outline done as to
where you are. Use the chapter experts to assign
each of these sections. Listing the progress we’re
making in the outline document. Everyone should
be adding to this document by having it tasked out
to everyone

- Simple WBS: group requirements, they develop into
work items, code, documentation, cost estimation,
some of the major big chunks. Then put below that
smaller chunks and then you stick some people on
the smaller chinks. And once you’ve done that it
creates the Pert chart.

- Break documentation into the smaller pieces. In the
timebox it’s going to get done by the end of this
semester. Turn that into a Pert chart which is the
one that says that the weekly documentation is an

 55

hour a week. And the milestone doc is 4 hours per
week and you add it up and compare it to the rest
of the time. Everyone should be rotating through
this and working the same amount

- The book discusses the processes until chapter 14. A
chapter expert should be able to tell everyone what
each thing in your chapter means. Be responsible
for your chapter so that you can be responsible for
part.

- This outline should’ve happened at the start.
- What you come in here with in the review is the

state of every part of this outline document. He will
review it and let us know how we’re doing. There
should be a part in each part of the review.

- Just update the document online and he should be
able to see it. We probably should update him when
we want him to read through it.

- You should have your requirements document
done. The 5 actors and their requirements. That is
what we FOR SURE need to have by next Thursday.

- Delphi is after all this and then that’s when the
change order comes in.

- When you do cost estimation, do it by hours. Do the
cost estimation for the change order and that’s how
many extra credit points we will barter for. That’s
how we can see how good we’ve done with
estimating cost.

- Create a state chart for the milestone “done”
“almost done” “need to be started” etc.

Action Items/ Further Questions Goals for this week:
- All chapter experts edit their summaries to include

suggestions for our project and documentation
- Linda: Create a change order example form
- Heather: Update feature requirements for this last

milestone on ADO
- Heather: Non-functional objective: put together

color schemes for GUI
- Myron, Reid, Tanner: Meet together and figure out

what’s needed for the prototype coding
- Brad: Check-in/Check-out history
- Brock: Storyboard first draft

Week from today we should be launched to take off into the
details of everything

 56

Team 5

Meeting Log # 7

Date:
11/8/18

Duration: Team Progress Meeting with Client

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

Expecting
- Seeing the completion of chapter 1 and 2 in

documentation.
- Starting building stuff from chapter 4 and chapter 8.

Remember in Gantt chart to include time boxes.
- We should have 4 stories (for 4 weeks) and we

should put the tasks in each story based on the
Gantt chart. We try to estimate our time because of
the Gantt chart

- Take all the stuff from milestone 1 that we’re done
with (like choosing one method over the other)

- M1 documentation should be added to the end of
the 5th story in this milestone

- Add slack time into the Gantt chart
- What is our software quality plan?
- V&V verification and validation. We did what we’re

supposed to do and we did it the right way
- Not just a list of requirements plus a brief statement

about what it does and what it means
- We’re in a competition to get this project.
- Make sure our prototype addresses risk

management. What if we had to have disability.
- Have we addressed and thought about the risks?
- If you finish something don’t wait for way down the

road for teacher to look at it. Put all of teacher’s
tasks in a separate story.

Additional things
- As shown by our state diagram… make sure that

everything applies to what we’re using. Make sure
you don’t see any risk problems in these last 4
chapters

 57

Action Items/ Further Questions - A week from today he will have looked at things to
check on things. Pay attention to time boxes and
make sure we have things finished.

- Get ready for change order forms to get extra credit
forms. Do a time estimate to achieve it and then
somehow show a calculation for how we get to the
amount of extra credit. 120 points per how many
man hours. That’s the ratio you’ll do for a change
order form. Then we’ll negotiate. Just make a story
that will be a proposal of an extra feature for
teacher to approve or not and THEN we make the
file for the change order form.

- Your idea for how you’ll deal with the last 4
chapters should continue on through the project.

- Make a team org chart. A series of org charts for
each story and task. These are for figuring out who’s
in charge of getting things done.

- Take the use case, code snippet, GUI, test case to all
go together in the documentation.

- Pages 40-41. You need to have an organization of
final milestone of those items on page 40-41. Are
we going to do test cases, GUI, snippets, and use
cases all together as one group instead of all
separate groups. He wants to see that, the
complete project plans, all these charts by next
time.

 58

Team 5

Meeting Log # 8

Date:
11/13/18

Duration: Team Meeting

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

- Do a blank org chart and make one for documents,
one for code, whatever. Put everyone’s names in
the boxes and everyone will put their level of
availability for involvement for each task.

- The Gantt chart should’ve been made after the
Pertt Chart.

- Need to have configuration management done
before the others.

- All diagrams should come from chapter 10, the class
diagrams come from that and the code should be
moving along

- The chapters in gray need to be a big dent during
Thanksgiving break

- Everyone agree and understand where we’re at.
- Look at the Gantt chart to be able to see who has

the time for each thing

Action Items/ Further Questions - Do the org charts with the hours and the task
tracking so that everyone can tell who’s doing what.

- Pert Chart
- Add the man hours to the Gantt Chart, and who’s

on each task so that people can see who’s on which
assignments

- Brock needs to be sending out assignments for us to
do during the break while he’s in Mexico

 59

Team 5

Meeting Log # 9

Date:
11/29/18

Duration: Team Progress Meeting with Client

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

- You can use chapter 11 to organize quite a bit but
not everything

- Sit down and draw out the formatting of where
everything will go for the documentation

- Organize so the GUI, code snippets, UML, class
diagrams involved, and do that into use case
diagrams. You might end up with 3 pages on just
student use cases.

- Be able to do views relative to what we’re talking
about

- Right now the software development plan should
be done and we should be organizing our code and
organizing the final documentation

- We can’t use a test driven development technique
because we already have so much code written

- We can use data flow coverage for sure

Action Items/ Further Questions - Give the reason for Java in part of the description of
software architecture

- Describe whether you should keep this prototype or
not. That goes into chapter 11.

- Compile it so that we that someone won’t have to
go back and forth.

- Add to chapter 11 or 12 that Java we use objects
because they’re easier to manipulate.

- V&V should be part of the quality control
document.

- We should have listed the major requirements of
each player.

- For software maintenance be able to say how we
will maintain the fixes on the program. Will people
go out to each school? What do we do?

- Make a change order for tracking students scores.
- Make a change order for Make a reverse tutorial

(you randomly insert a number and then move the
beads)

 60

Software Engineering (CS 2450) - Fall 2018

9/04/18 - 9/25/18

Team 5

Team Manager: Brock Brown

Azure Dev Ops: Brad Allred

Lead Programmer: Myron Burton

Programmer: Tanner Chamberlain

Programmer: Reid Kuttler

Lead Architect: Mariah Bleak

Scrum/QA Lead: Heather Hyer

Scribe: Linda Jensen

MILESTONE 1

 61

Table of Contents: (page numbers based off the original printed version)

2-10… Meeting Logs

11… SCRUM and Kanban Research

12… UML Diagrams

13-14… GUI Layout

15-17… Azure DevOps (Visual Studio Team Services)

18-22… Backlog and Sprint Decomposition

23… Use Case Examples and Test Case Examples

24… Change Order Form

25-31… Chapter Summaries

 62

Team Name

Meeting Log # 1

Date: 8/28/18 Duration: 1 hour

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

• Programming languages that team members are
comfortable with.

• Strengths and Weaknesses of everyone in the group.
See “Finished Items” for assignments

• Communication (email, slack, phone numbers)

Finished Items

• Traded Joshua Blackhurst for Bradley Allred.

• Gained Heather Hyer from Team 3 for QA Testing and
Agile Processes.

• The official programming language will be Java because
that is what most people in the group are comfortable
with, and will have the most support in doing.

• Linda will be Lead Scribe but will help with GUI, Myron
will lead GUI but will help with Scribe.

• Team Manager: Brock Brown

• Foundation Server: Brad Allred

• Lead Programmer: Myron Burton

• Programmer: Tanner Chamberlain

• Programmer: Reid Kuttler

• Scribe: Linda Jensen

• Lead Architect/ Designer: Mariah Bleak

• Scrum/Agile/XP Master: Heather Hyer

Unfinished Items

• Everyone still needs to finish Module 0 and read
Chapters 1-3

• Assignments of Chapters of the book

 63

Team Name

Meeting Log # 2

Date: 9/11/18 Duration: 1.15 hours (class period)

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

Developing Questions for the Teacher:

• Make sure that Java is approved as a programming
language?

• What exactly are we tracking in Team Foundation
Server? Is that for documents or is that for how we plan
out tasks/ Can we use something else for task tracking?

• Is cost estimation/scheduling/budget tracking on Team
Foundation Server? Is that different from task tracking?

• Do we need a 100% working abacus by the end of the
course, or will it just be a prototype still?

• Heather and Mariah compiled more questions for
design aspects of the program (need design questions
answered before UML can be created)

Obstacles Encountered

• Only one of us knows how to use an abacus (Myron)

• VSTS instead of TFS, the teacher said it’s easier because
you can create new projects easily.

Finished Items

• Going to use Git instead of Azure

• Going to use Scrum and Kanban

• Myron has a server that he can host the abacus at. He
has a domain and knows how to build websites and
servers. He can also help with the cloning process using
Git.

• Heather set up a Trello for us to track our tasks before
the TFS gets set up.

 64

Unfinished Items

• Make UML Diagrams

• VSTS Setup (Brad)

• Task Tracking

• Decomposing Each milestone (scheduling)

• Use test case examples

• Go through milestone 1 as a group

Notes

• Heather and Linda will work on the design of the
abacus

• We don’t have a designated tester, but Heather works
in QA and will take the lead on that with help from
other team members.

• Everyone needs to put their github information on slack
so that Reid can add us into his repository for the
abacus prototype

• Every Tuesday from now on is instructor, every
Thursday is client

• The app is for elementary students (K-5)

Action Items • Mariah take the lead in UML Diagrams

• Heather take the lead on test cases

• Everyone learn how to use an abacus

• Linda and Heather take the lead on design mockups

 65

Team Name

Meeting Log # 3

Date:
9/13/18

Duration: 1.15 hours (class period)

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak (on Slack) 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

• Meeting schedules

• VSTS and how to set it up. Cross collaborated with
other teams

Obstacles Encountered

• We didn’t know we had to email to schedule a time
to meet with the Client, we assumed that it would
be every Thursday. So we now don’t have a meeting
with the Client and are at a disadvantage

Finished Items

• Using Scrum and Kanban

• Set up an outside team meeting for Monday night at
7 in the library

• Emailed the client to set up a meeting for thursdsay

Unfinished Items

• UML Diagrams

• Documentation

• Decomposing Milestones into the VSTS

• Going through the entire Milestone 1 and tasking it
out completely

 66

Action Items • By Thursday everyone needs to have finished
reading their assigned chapters and writing a small
summary to send to me so that I can put it in the
documentation

• By Tuesday Myron and Mariah will have a working
draft of the UML diagrams

 67

Team Name

Meeting Log # 4

Date:
9/17/18

Duration: 1 hour (meeting in the library)

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed

• A VSTS demonstration from Heather.

• A UML demonstration and walkthrough from
Mariah.

• Use Case assigned to Tanner and Test Case assigned
to Myron

• Tasked out things on VSTS

Obstacles Encountered

• We need to figure out the story points for each

• This milestone will be heavier on the
documentation and setup members, and later
milestones will be heavier on the programming
team. This is fine, just needed to be addressed.

Finished Items

• Brock finished the 3 reasons for against Kanban and
SCRUM. It’s been added to the documentation

Unfinished Items

• Sprint 2 is starting tomorrow and we still need to
finish reading our chapters for sprint 1.

 68

Notes

• Do we want something that’s already programmed
in or should the teacher be making these exercises
from scratch (where does the curriculum come
from? This is a question for the client on Thursday

Action Items • There has been some debate on programming
language. The programmers will figure it out and
get back to the group.

 69

Team Name

Meeting Log # 5

Date:
9/20/18

Duration: 1/2 hour (in class meeting with
Client)

Team
Members
 (* team
leader)

Name Contribution Signature

*Brock Brown 12.5%

Linda Jensen 12.5%

Brad Allred 12.5%

Mariah Bleak 12.5%

Myron Burton 12.5%

Reid Kuttler 12.5%

Tanner Chamberlain 12.5%

Heather Hyer 12.5%

Topics Discussed (Client Answers to
Questions)

• Grade level is K-5

• Go to the education section of UVU to figure out
how to teach primary level kids

• Time level of kids on the app needs to be flexible.

• All we’re worried about is the interface on this
prototype

• This should be a flexible tool and be able to new
curriculum, and to have presets

• How do you give a kindergarten kid a tutorial? We
need it as a presentable tool

• It’s a piece of software we’re offering to schools for
those that want it.

• Don’t get too broad with this. Our job is to design
an interface that will work with K-5 children to use
an abacus. How the teacher uses it is not an issue
right now. It’s not important for Milestone 1

• Adjust the abacus for K-5 levels, Kindergarteners
don’t know numbers up to 1000 but 5th graders do

• Maybe on a tablet, maybe on a cellphone, maybe
on a computer, maybe ONLY a computer. We don’t
care yet, design needs to meet the educational
parameters. How they use the tool is up to them.

• We don’t know what we have to do until we talk to
an educational resource

• We need cost estimation, planning, etc.

• He wants us to have it so if you type in a number, it
will show up in the implementation of the abacus

• 1s and 5s will be a different color, but make sure a
colorblind person will be able to tell the difference
still

• In a real abacus you drag it, we don’t want it to just
click

• Make it customizable column numbers (put a
setting in so you can change the mode)

• If they pass a test, they can move up a level (with
more columns)

 70

• Change the name to be easier for kids?? He had
trouble reading it.

• Don’t limit your thinking to someone else’s idea.
We’ve gone way too far for these app ideas, we
need to dial it back and go a lot more basic.

• Do we need passwords? Logging in is too
complicated. Just save what level they’re at.

• We’re doing way too much. No divide, no multiply.
No assignments. Meet the requirements of
milestone 1

• Only need functions for add and subtract

• Don’t go beyond what they’re asking for, do what
they’re asking for very well.

• Addition, Subtraction, ability to change the
columns, and that’s IT

Finished Items

• Marking story points in Azure Dev Ops

 71

SCRUM and Kanban Research

SCRUM:

 Support of SCRUM:

- Set sprint periods facilitate the continuation of the project, easier and faster to catch

problems in development.

- The mandatory 15-minute meetings help to keep everyone accountable at all times.

- The product owner dictates the product, which keeps it unified.

Against SCRUM:

- The mandatory 15-minute meetings can negatively affect the amount of informal

interaction

- The structure doesn’t allow for a larger project that might take longer than the allotted

time.

- Due to predefined sprints, process is less flexible.

Kanban:

 Support of Kanban:

- Limiting Work-In-Progress (WIP) forces small changes to be implemented quickly

- The quick, small changes will give rise to new questions quickly, so we can tackle the next

problem

- Encourages each person to take ownership of his/her part in the project

Against Kanban:

- Limited WIP may produce the Convoy effect, where one large task slows everything else

down

- Definition of “done” could very easily be confused and project parts could move more

quickly than they should.

- Lack of deadlines could lead to conflict over a couple of procrastinators

 72

UML Diagram

Mode

+teacherView()

+studentView()

studentView

+Exercise()

+Test()

+StudentViewGrade()

+Tutorial

teacherView

+createExercise()

+createTest()

+viewGrades()

User

-name:string

-ID:int

-grade:int

Student

-name:string

-ID:int

-grade:int

Abacus

-input:int

-grade:int

+add()

+subtract()

+divide()

+multiply()

Bead

+Bead()

+actionPerformed()

+toString

Column

-ONES:int

-TENS:int

-HUNDREDS:int

-THOUSANDS:int

Location

-FIVES:int

-ONES:int

Position

-Counted:bool

-NotCounted:bool

 73

GUI Layout

 74

 75

Azure DevOps setup

We will be using Azure DevOps for our management software. The workaround that we decided to use

for Permissions is to have a universal account, which anyone can access. We also have plans to swap

permissions for individual team members as necessary as the project progresses.

Technologies we plan to implement are as follows:

1. Boards (including Work Items, Backlogs, and Sprints)

2. Repos (source control)

3. Pipelines (release management)

4. Test Plans

Since we found we could use Azure as a one-stop shop for most of everything we need for development,

we thought that if we committed to learning these processes we could really streamline our progress.

In the boards section, there are 4 parts we plan to use.

Work items is the team members home page in which they can go to see their own tasks. The page is

also customizable to the individual team member’s preference.

 76

Boards and Backlogs will display the milestones and their progress including the task inside each

milestone. Again, there is a level of customization that we will take greater advantage of as the project

progresses.

Sprints will be used to display the more urgent tasks. These will be anything with an upcoming due date

including milestones and tasks.

 77

Repos has many subgroups and we will be using all of them. There is a file explorer for the source, a log

of commits, pushes, and branches. ADO also has pull requests, which are useful for code reviews before

merging changes.

(commit log)

(file explorer)

The Pipelines section will be used for release management. We are still early in the development

process, so we haven’t had much to look into for this or for Test plans. But we will be able to track build

version and plan releases around testing as needed.

 78

Backlog and Sprint Decomposition

Sprints

We opted to have week long sprints, just based on

the amount of work to be done for each milestone

within the timeframe given.

In total we will have 12 sprints this semester,

distributed among the corresponding milestones.

If we strictly follow this schedule, we should have

no problem completing the work for each

milestone in a timely manner.

On the Sprint’s taskboard, there is a

burndown chart that provides a visual

representation of the team’s planned

progress versus our actual progress.

There are also widgets on the main dashboard showing the burndown/overview for the current sprint.

 79

Milestone/Feature/Story Breakdown

We’ve divided the work for this semester into Epics (one for each milestone), Features for each Epic, and

Stories for each Feature. Each backlog has a burndown chart to help keep track of progress in and Epic,

Feature, or Story-level scope.

Breakdown of Epics:

Breakdown of Features for the first Epic:

 80

Breakdown of Stories for the first Epic:

The story-level backlog provides a chart to track

the team’s velocity. This is useful for budget

tracking.

There is also a chart to keep track of the team’s

cumulative flow, which is helpful for cost

estimation.

 81

Task Tracking

There is a widget on the main dashboard

that gives each team member an

overview of the stories, tasks, and

features assigned to them.

Each team member is responsible for creating tasks for each of their assigned stories for a given sprint.

They are also responsible for tracking the progress of their tasks and stories and the plan is to do so

regularly in order to get an accurate idea of the team’s progress.

 82

Each story is assigned a certain number of story points. The value for these story points follows a

modified Fibonacci sequence (1,2, 3, 5, 8, 10) and points are assigned by team consensus according to

complexity, difficulty, and estimated time cost. Stories should also include acceptance criteria and a

description as needed. Each feature contains a more in-depth description. Stories are also assigned a

priority value ranging from 1-4, weighted by what is most vital to the epic as a whole.

Each team member also keeps track of the tasks they have created for their stories, recording a time

estimate (in hours), and reporting the actual time the task took. This is an important tracking

mechanism, since this is what is reported in the sprint’s burndown chart, which helps us as a team to

know how accurate our estimations are and adjust accordingly.

 83

Use Case Examples

Test Case Examples

Using a coverage based text we will be able to create a bead and use a toString method to get

expected values from the bead. This can test that bead creation works. Using the created bead we will

run another test within the same case to make sure that moving of the bead behaves as expected, again

using the toString to compare values.

The main abacus class will have a test case that affirms that the number of columns shown

matches the number of columns provided. It will also affirm that the value of the abacus matches the

expected value after a set number of moves. This will test edge cases for the largest column and for

moving the max number of beads. It will also perform these actions on the largest, smallest and a select

few other board sizes. This will ensure that when moving beads around the board that they will update

the value appropriately.

 84

Change Order Form – Team 5

Description of Proposed Change:

Date Requested:

Proposed Change Order Value:

Estimated Extra Time Required:

□ Approved □ Denied

Final Negotiated Price:

Signature of Customer x

Signature of Team Manager x

Date:

Date:

 85

Chapter Summaries

Chapter 4: Mariah Bleak

Configuration Management

Configuration management comprises of careful procedures that are necessary to manage every
element over the lifespan of a large software system or a distributed development project. Throughout
the lifetime of a system or project, there may at any given time exist different versions of the software,
depending on what updates have been given to the client and if any programmers are working on older
versions.

Baseline –official version of the complete set of documents related to the project.

Configuration items are the items contained in the baseline.

Ex:

• Source code components

• The requirements specifications

• The design documentation

• The test plan

• Test cases

• Test results

• The user manual

Configuration management takes care of controlling the release and change of CRs throughout the
software life cycle.

CCB (Configuration control board) ensures that any change to the baseline is properly authorized and
executed. When a change request is submitted to the CCB, they need info on how the change will affect
the product and the development process. If approved, the change request becomes a work package
which will need to be scheduled. All changes and status of changes need to be recorded, this ensures
that if needed to go back to a previous version or to monitor what changes have been made there is a
clear record.

Chapter 5: Brock Brown

It’s really important to decide what the project goals are, i.e. fastest, least memory use, etc. so everyone
knows and can comply with said goals. Along with these goals must come the explicit expectation of
clear notes/pseudocode in the file. As we progress we will further clarify the standards for both in-code
documentation and out-of-code documentation. I think that the ideal communication is an informal and
open dialogue, which I believe supports my goal of an integration-style leadership and team.

Chapter 6: Linda Jensen

Chapter 6 is about managing software quality. It’s important that quality be a key factor in designing
software- it can’t be added as an afterthought. You can improve the quality by improving the product or
process. This section can also be where we calculate the complexity of the project. If the code is mostly
brute force, it’s not high in quality. You need to figure out your scale of determining complexity
however, so that you can compare them with other projects. Quality attributes include: correctness,
reliability, efficiency, integrity, usability, maintainability, testability, flexibility, portability, reusability,

 86

and interoperability. These qualities fall into 3 categories: product operation, product revision, and
product transition. There are many different perspectives on what gives a program quality. Some may
say it depends on how well it conforms to the users’ needs, some say it’s how much money it made vs
time spent on it. Overall, there needs to be a test for quality agreed on by the shareholders because
quality can be hard to measure quantitatively.

Chapter 7: Bradley Allred

The models outlined in 7.1 are cost estimation functions where the variables are based of previous
similar projects, they are useful when there is a lot of data to sort through to generate an estimate. The
problem is for this project we do not have a lot of data to base our estimation on. Section 7.2 is cost
estimation for experts which does not apply to our situation. However, it does include some techniques
that will be useful for us. Section 7.4 is called Agile cost estimation and provides the least accurate cost
estimation because it places emphasis on the ability to change rather than having a set plan.

The best fit for cost estimation for our situation is found in section 7.3 Distribution of manpower over
time. this section is generally used in coordination with a cost estimation expert, but since this is a
smaller project (Relative to the working world) we can estimate our own manhours cost. It is important
to note that adding more people to the project will have diminishing returns. A 20 man-month cost
estimation does not mean you can just throw 80 people at the project and have it done in a week. Also,
with this style it is important to tell the customer the uncertainty of the estimation. Research has shown
that there is a 75% chance that the actual cost will be within 20% of the estimate. The benefit of this
style is that as the project progresses you will continue to get more and more accurate.

Chapter 8: Tanner Chamberlain

Chapter 8 can be applied by using project planning and control in our project. Planning and controlling

the project is vital to making sure the project does what it’s supposed to and works correctly. In order to

plan and control the project, variables such as staff experience, the goals of the project, and the tools

used in the project need to be considered. Knowledge of certain categories is needed prior to planning.

During our project, we need to ascertain the client’s needs for the product, familiarize ourselves with

the tools, and determine our resources to create the project. Obtaining these, we’ll be able to

determine what we need to focus on and what problems we’ll be facing. This is a form of risk

management, where we can see what areas we’re weak in and plan on mitigating those weaknesses.

Finally, setting goals and keeping track of progress are focused around the milestone reports created

during development.

Chapter 9: Heather Hyer

Requirements engineering is a cyclical process involving four types of activity: elicitation (understanding

the problem), specification (describing the problem), validation (agreeing upon the problem), and

negotiation (fitting the problem to the situation at hand). Documentation and Management should be

incorporated into each of these activities. Requirements engineering takes into account both social and

cognitive issues. Requirements engineering is taking a problem to be solved and returning the

requirements specifications that will be used to solve the problem. Prioritizing requirements includes

breaking things up into must haves, should haves, could haves, and won’t haves. Requirements

engineering activities include: asking, task analysis, scenario-based analysis (think-aloud), ethnography,

form analysis, natural language descriptions, derivation from an existing system, business process

redesign (BPR), and prototyping.

 87

I think right now our team needs to focus on asking the client what the product must have and leaving

our own ideas about what it could have or even what we think it should have off the the side for now.

We’ll also want to ensure we’re specifying requirements for our tasks as we move forward into the next

milestone. I think we should also look into doing scenario-based analysis, both on our own, and through

interviewing the client and potential users (teachers and students).

Chapter 10: Brock Brown

There are 4 modeling perspectives that are analyzed in UML diagrams: entity-relationship modeling,

finite state machines, data flow diagrams, and CRC cards. I think that the class diagrams, the sequence

diagrams, and the use case diagrams will be the most important.

Chapter 11: Mariah Bleak

Software architecture concerns the large-scale structure of software systems. This large-scale structure
reflects the early, essential design decisions. This decision process involves negotiating and balancing of
functional and quality requirements on one hand, and possible solutions on the other hand. Software
architecture is not a phase strictly following requirements engineering, but the two are intertwined. In
this chapter, we discuss how to design, document and evaluate software architectures.

Three purposes:

- Vehicle for communication among stakeholders
- Captures early design decisions
- Transferable abstraction of a system

Forces that influence architecture:

- Developmental organization
- Background and expertise of the architect
- Technical and organizational environment

In the software architecture, the global structure of the system has been decided upon. This global
structure captures the early, major design decisions. Whether a design decision is major or not really can
only be ascertained with hindsight, when we try to change the system.

Stakeholders speak with architect back and forth over requirements and quality, when they reach an
agreement that feeds into the development.

Attribute Driven Design (ADD) is described as a top down decomposition process. In each iteration, one
or a few components are selected for further decomposition. In the first iteration, there is only one
component, ‘the system’. From the set of quality attribute scenarios, an important quality attribute is
selected that will be handled in the current refinement step. For instance, in our library system, we may
have decided on a first decomposition of the system into three layers: a presentation layer, a business
logic layer, and a data layer. In a next ADD step, we may decide to decompose the presentation layer,
and select usability as the quality attribute that drives this decomposition. A pattern is then selected
that satisfies the quality attribute. For instance, a data validation pattern (Folmer et al., 2003) may be
applied to verify whether data items have been entered correctly. Finally, the set of quality attribute
scenarios is verified and refined, to prepare for the next iteration.

 88

Backlog is a list of issues that currently need to be tackled in the development/design.

There are different types of undocumented design decisions:

- The design decision is implicit: the architect is unaware of the decision, or it concerns ‘of course’
knowledge.

- The design decision is explicit but undocumented: the architect takes a decision for a very
specific reason. The reasoning is not documented, and thus is likely to vaporize over time.

- The design decision is explicit, and explicitly undocumented: the reasoning is hidden.

Design Decisions Process:

Element Description

Issues

Decision

Status

Assumptions

Alternatives

Rationale

Implications

Notes

Design issues being address by this decision

The decision taken

The status of the decision (pending, approved)

The underlying assumptions about the environment in which the decision is taken

Alternatives considered for this decision

An explanation of why the decision was chosen

Implications of the decision

Any additional info

View: representation of a whole system from the perspective of a related set of concerns.

Viewpoint: establishes the purposes and audience for a view and the techniques or methods employed
in constructing a view.

Module viewpoints give a static view of the system. They are usually depicted in the form of box and line
diagrams where the boxes denote system components and the lines denote some relation between
those components.

Component and connector viewpoints give a dynamic view of the system, i.e. they describe the system
in execution. Again, they are usually depicted as box and line diagrams.

Allocation viewpoints give a relation the system and its environment, such as who is responsible for
which part of the system.

Decomposition: In a decomposition viewpoint, elements are related by the ‘is a submodule of’ relation.
Larger elements are composed of smaller ones (top down).

Uses: In a uses viewpoint, the relation between elements is ‘uses’ (A calls B, A passes information to B,
etc.).

 89

Layered: The layered viewpoint is a special case of the uses viewpoint. It is useful if we want to view the
system as a series of layers, where elements from layer n can only use elements from layers <n. Layers
can often be interpreted as virtual machines.

Class: The class viewpoint describes how certain elements are a generalization of other elements. The
relation between elements is ‘inherits from’. It is obviously most applicable for object-oriented systems.

Conceptual/Logical viewpoint: describes the system in terms of major design elements and their
interactions.

Implementation viewpoint: gives a view of the system in terms of modules or packages and layers.

Process: The process viewpoint describes the system as a series of processes, connected by
communication or synchronization links.

Concurrency: To determine opportunities for parallelism, a sequence of computations that can be
allocated to a separate physical thread later in the design process is collected in a ‘logical thread’.

Shared data: This viewpoint shows how persistent data is produced, stored and consumed. It is
particularly useful if the system centers around the manipulation of large amounts of data.

Client-server: To describe a system that consists of cooperating clients and servers. The connectors are
the protocols and messages that clients and servers exchange.

Deployment: This viewpoint shows how software is assigned to hardware elements, and which
communication paths are used.

Implementation: This viewpoint indicates how software is mapped onto file structures. It is used in the
management of development activities and for build processes.

Work assignment: Shows who is doing what. This viewpoint is used to determine which knowledge is
needed where.

Component Types:

Type Description

Computational

Memory

Manager

Controller

The component performs a computation of some sort

Maintains a collection of persistent, structured data to be shared by a number of
other components

Contains a state and a number of associated operations

Governs the time sequence of other events.

Architecture Tradeoff Analysis Method(ATAM):
1. Present method to stakeholders

 90

2. Present business drivers (by project manager)
3. Present architecture (by lead architect)
4. Identify architectural approaches
5. Generate quality attribute tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Chapter 12.1: Tanner Chamberlain

Chapter 12.1 can be applied by designing our software efficiently with the use of modules. A module is a

portion of code that does a specific task, for example a class in Java or struct in C. Using modules

effectively gives many benefits, such as readability and adaptability. Effective module usage employs

information hiding, which means each module gives and takes information on a need-to-know basis.

This process means that unnecessary information is abstracted from each module, so data is contained

and clean. Individual modules also need to contain only relevant data and processes. Modules whose

elements all function for one purpose are the most effective, while those that have unnecessary

functions or try to do multiple processes are messier and less effective. Perfect module implementation

is very difficult, but doing it well will lead to less errors, more readable code, and an adaptive program.

Chapter 12.1-12.8: Reid Kuttler

The essence of the design process is that the system is decomposed into parts that each have less

complexity than the whole. Some form of abstraction is always used in this process.

- The constituents of a module should belong together and be friends.

- The interfaces between modules should be as thin as possible.

- Each module should hide one secret. Information hiding is a powerful design principle where

each module is characterized by a secret which it hides from its environment.

- The structure of a system, should have a simple and regular shape when depicted as a graph.

They discussed four design methods in this chapter

1. Functional decomposition

2. Data flow design

3. Data structure design

4. Object-oriented design

The first three methods have been around the longest. Object-oriented analysis and design came later,

but is now the most widely used approach.

 91

However simply using object oriented design does not guarantee a good design. Good practices still

have to be followed.

A design pattern is a recurring structure of communicating components that solves a general design

problem within a particular context. These design patterns describe best practices and represent the

collective experience of some of the most experienced and successful software designers. In a similar

way antipatterns describe bad experiences

Finally the design itself must also be documented. IEEE may serve as a guideline for this documentation

as it lists a number of attributes for each component of the design.

Chapter 13: Myron Burton

Testing is one of the most important parts of Software Engineering. Just like we wouldn’t sell cars that
haven’t been crash tested, or build bridges that hadn’t been tested for strength and durability, we
shouldn’t build programs without proper testing. To test there are three basic models and to ideologies
that can be used. The methods include coverage based, fault based, and error based testing. Coverage
makes sure that all of the lines of code are actually worth their weight and that they can be run. Fault
based testing introduces possible errors and makes sure that the program is able to handle these issues
properly. Error based testing checks key “stress” points of a program, areas that are commonly issues
among programs. This can all be accomplished using either black box or white box testing, where black
box testing doesn’t consider implementation where white box knows the implementation of the
program. There are two different ways to build test cases which are top down and bottom up methods.
Top down considers the system as a whole and goes into specifics using stubs which simulate functions
of components not yet implemented. Bottom up uses drives that generate testing environments for the
code.

Testing comes in different stages and can be modified based on the model used and the client
specifications. Unit testing is the most basic stage which is testing specific parts of the code. This helps
test each individual component in an integral method. System testing compares a program with its
specifications and the user documentation given. There may also be Acceptance testing which is similar
to system testing but is done by supervision of the client. Finally there is installation testing which makes
sure that the program works in various environments.

Testing is documented in what IEEE calls a verification and validation plan. This report covers the design
specification, the procedure specification, and an item transmittal report showing how each feature will
be tested, what sequence testing takes and what items will be tested respectively. After testing is done
a test log is composed, an incident report with incidents that need further investigation is written, and a
summary report shows the overall evaluation of the testing and any findings that should be reported

